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Abstract— In this paper, we utilize the application of sparse representation on single image super-resolution problems. It is found from the 
image statistics that image patches can be well-represented as a sparse linear combination of elements from an appropriately selection 
over-complete trained dictionary. In this algorithm, a sparse representation for each patch of the low-resolution image, and then the 
coefficients in the low-resolution domain used for reconstruction of the high-resolution counterpart. By jointly training the low-resolution and 
high-resolution dictionaries and selecting the best match for the local patch, a super-resolution image is generated. By increasing the 
similarity index between the low-resolution and high-resolution local patches, it is possible to get best results. Experimental results on 
single image super-resolution demonstrate the superiority of the proposed method. 

Index Terms— Bicubic interpolation, Joint dictionary, Sparse coding, Sparse representation, Super-resolution.   

——————————      —————————— 

1 INTRODUCTION                                                                     

Super-Resolution is termed as a set of methods whose aim 
is to improve the spatial resolution of images. It is a technique 
to increase the resolution of an imaging system. It also refers 
as the problem of constructing high-resolution image from one 
or multiple low-resolution images. In effect, super-resolution 
extrapolates the high frequency components, and minimizes 
the aliasing and blurring during the image capturing process. 
Therefore, super-resolution can be distinguished in two main 
families: single image super-resolution method and multi-
frame super-resolution method. Super-resolution is a very 
intersecting area in research. It is considered to be one of the 
most promising techniques that can help to overcome the limi-
tations due to optics and sensor resolution. Based on the mul-
tiple images super-resolution, many methods have been pro-
posed (e.g., [1], [2], [3] ).  

The goal of this paper is that constructing high-resolution 
image form single observed low-resolution image, with the 
help of the joint training dictionary. Therefore, it is referred as 
“single image super-resolution method”. Super-resolution 
techniques have been proved useful in case where greater clar-
ity in image is required. Super-resolution has a wide range of 
applications such as satellite imaging, medical imaging (mag-
netic resonance imaging (MRI) and computer tomography 
(CT)), and object recognition. Super-resolution can be very 
useful in case where multiple images of the same scene are 
easily obtained and help for getting more details from them. 
For surveillance and forensic purposes, it is often required to 
get more information of region of interest (ROI).  

The super-resolution task is typical example of an inverse 
problem of recovering the original high-resolution image from 
one or more the low-resolution images. Linear formulation of 
the imaging model enables to formulate the super-resolution 

problem. This problem is ill-posed because of the lack of avail-
ability of low-resolution images and unknown blurring opera-
tors. Since there is no direct solution to the ill-posed problem, 
regularization procedures are necessary to stabilize the inver-
sion of this ill-posed problem, such as [1], [4], [5]. 

However, when number of available low-resolution images 
is small or large magnification factor, the functionality of the 
reconstruction-based super-resolution algorithm degrades 
rapidly which may be produced smooth output but losing 
important high frequency details [2]. Simple resolution en-
hancement methods have been commonly used in image pro-
cessing for noise removal based on smoothing and interpola-
tion techniques.  Another category of SR algorithm is based on 
interpolation [6], [7], [8]. Bilinear and Bicubic interpolation are 
the simple methods that generate smooth images with ringing 
and jagged artifacts. By exploiting the natural image priors, 
interpolation will give more favorable results. 

Machine learning technique is third category of super-
resolution algorithm. In this technique, it tries to capture the 
coexistent prior between low-resolution and high-resolution 
image patches. An example based learning method [9] learned 
that how to predict low-resolution to high-resolution via a 
Markov Random Field (MRF) solved by belief propagation. 
This method extends Primal Sketch priors [10] is developed to 
enhance blurred edges, ridges and corners. In order to over-
come this problem, Locally Linear Embedding (LLE) [11] pro-
posed via multiple repetitive learning. Due to over- or under-
fitting problem, blurred results are obtained by using a fixed 
number K neighbors. Super-resolution method [12] is present-
ed new approach based on sparse representation to thwart 
super-resolution problem. For training a dictionary, it requires 
a multiple training images which consumes lots of time.   
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In this paper, we proposed most flexible method that is 
based on sparse representation using sparse coding which 
helps to escape over- or under-fitting problem of Locally Line-
ar Embedding (LLE) [11] and therefore, it gives better quality 
results. To avoid the above difficulties, sparse representation is 
efficient and recent method used to improve quality of an im-
age. However, sparse coding is taken too much time when it is 
applied over a large sampled image patch database directly. 

This paper focuses on the problem of generating the super-
resolution version from input low-resolution image. In previ-
ously mentioned approach [13], we will depend on patches 
from the input image. However, instead of that we learned 
complex representation by directly working on the image 
patch pairs sampled from high- and low-resolution images 
[13], which helps to improve speed and complexity of the al-
gorithm. Accurate recovery is very difficult because of the ill-
posed nature of super-resolution problem. But sparse repre-
sentation of the image patch provides both effectiveness and 
robustness which helps in regularizing the inverse problem. 

Now sparse representation is used in many fields related to 
inverse problems. Sparse representation has been successfully 
applied in many area of image processing such as denoising 
[14] and restoration [15]. To learn an over-complete dictionary 
from natural image patches, the K-SVD algorithm [16] is used 
and successfully applied to the image denoising problem. In 
our setting, we will work with two joint dictionaries, Dh for 
high-resolution patches, and Dl for low-resolution patches. 
The sparse representation of a low-resolution patch in terms of 
Dl will be directly used to recover the high-resolution patch 
from Dh . Directly, we do not compute the sparse representa-
tion of the high-resolution patch. Here we obtain a uniform 
solution by allowing patches to overlap and demanding that 
the reconstructed high-resolution patches agree on the over-
lapped areas. In this paper, we try to learn two over-complete 
dictionaries in a probabilistic model similar to [17]. To learn 
effectiveness of the compact dictionaries that is applied to the 
generic images for super-resolution, image patch pairs must 
have same sparse representation with respect to Dh and Dl, 
and combining them simultaneously with proper normaliza-
tion. 

In case of online recovery, the sparse representation uses 
the only low-resolution dictionary Dl and high-resolution dic-
tionary Dh  is used to estimate the output high-resolution im-
age. The sparse representation is robust to noise as suggested 
in [14]. Our algorithm is more robust to noise in the test image 
and it also performs denoising and super-resolution simulta-
neously while most other methods cannot perform. 
a) Organization of the Paper: This paper is organized as follows: 
in Section 2, we discuss review of the super-resolution via 
sparse representation. In Section 3, we discuss how to learn 
joint dictionaries for the high- and low-resolution image 
patches respectively. In Section 4, we demonstrate experi-
mental results for regularizing the image super-resolution 
problem. 
b) Notations: High-resolution images are denoted by X   and 
Low-resolution images are denoted by Y, and x and y denote 
the high-resolution and low-resolution image patches respec-
tively. D denotes the dictionary for sparse coding. High-

resolution image patches dictionary and low-resolution image 
patches dictionary are denoted by Dh and Dl respectively. 
  

2 SUPER-RESOLUTION VIA SPARSE 
REPRESENTATION [12] 

 
“Single image super-resolution” is termed as the generat-

ing high-resolution image X from single low-resolution image 
Y of the same scene. In order to solve this ill-posed problem, 
two constraints are assumed: (1) A reconstruction constraint: 
which requires that recovered image X should be compatible 
with the input image Y as per the principle of the image ob-
servation model; and (2) A sparsity prior: which assumes that 
the sparse representation of image X can be reconstructed 
from low-resolution version and it can be sparsely represented 
with respect to over complete dictionary. 

Considering a signal x ∈ Rn can be referred as sparse linear 
combination over the over-complete dictionary D of K atoms, 
where x be a high-resolution image (patch).To be more exact, 
let nxKRD∈  , where D is  an over-complete dictionary of K 
atoms (K > n) which is large matrix learned using high-
resolution image patches. In practice, relation between high-
resolution patch x and low-resolution patch y which is 
downsampled and blurred version of x can be represented as:  

 
         ,LxSBxy ==                                                             (1) 

 
where y is a downsampled and blurred version of x, S is a 
downsampling operator, B is a unknown blurring operator  
and kxnRL∈  which denote their combined effect with k < n. 
Signal x can be written as 0αDx = , where KR∈0α . Eq.(1) 
written as : 
 

,0αLDy =                                                       (2) 
 
Eq. (2) indicates is that low-resolution patch y will have the 
same sparsely representation coefficients α0.The equation 

0αDx =  is not progressed if the dictionary D is over-
completed for the unknown coefficients α. After getting the 
sparse representation, high-resolution patch x can be recon-
structed by: 
 

0^ αDx ≈                                                   (3) 
 
      The joint dictionary training process will be discussed in 
Section 3. The generic images are used for training. 

 
3 JOINT DICTIONARY LEARNING AND PRO-
POSED ALGORITHM 

 
In this section, we discuss to process of the joint dictionary 

training. Initially we train two dictionary which having same 
sparse representation. Our goal is to learn high- and low-
resolution dictionaries. After training these two dictionaries, 
both dictionaries are combining and then learned to ensure 
same sparse representation. 
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Fig. 1. shows the flow of joint dictionary training diagram 
using multiple generic images. The input for the training is the 
collection of high-resolution images Xh = {x1, x2, ..., xn}  and 
corresponding low-resolution images Y l = {y1, y2, ..., yn}. Let  P 
= { Xh, Yl } represents the sampled trained image patch pair. 
Because of ill-posed problem, it is impossible to achieve the 
goal. To find the sparse representation over the over-complete 
dictionary, specially sparse coding is used to speed up the 
computation. The problem is solved in two steps: 
(1) Separate sparse coding for high- and low-resolution patch-
es are 

,minarg
1

2

2},{ ZZDXD h
h

ZDh h
λ+−=                         (4) 

and 

,minarg
1

2

2},{ ZZDYD l
l

ZDl l
λ+−=                            (5) 

respectively, and 
(2) By combined eqs. (4) and (5), a common sparse coding is 
generated which is represented mathematically represented as 
follows: 
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Here, I  and J are the dimensions of high-resolution and their 
corresponding low-resolution image patches in the form of 
vector L1 and L2 norm is used to make sure that solution is 
sparsest and to avoid uncertainty due to scaling respectively.  
 
ALGORITHM 

 
1: Apply a low-resolution image Y. Call both high-resolution 
dictionary Dh and low-resolution dictionary Dl. 
2: Divide the input low-resolution image Y into 5 x 5 patches. 
For each 5 × 5 patch y of Y, overlap 4 pixels starting from the 
top-left corner in each direction, and calculate the mean pixel 
value ‘m’. 
3: Optimization problem is solved by using following eq : 

,~~min
1

2

2
ZyD λαα +−                             (7)  

where λ is sparsity regularization parameter. 
4: From that, high-resolution patch *αhDx = is obtained and 
then keep the patch mx +  into a high-resolution image X0.  

Here ( ) ( )DyPP ~,~.maxarg* ααα =                                      (8) 

where  
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where b is the variance of the laplacian prior on α, and is 
the variance of the noise assumed on the data . 
5: But X0 is not satisfied reconstruction constraint. So we use 
gradient descent. Then we search nearest image to X0 which 
satisfies the reconstruction constraint: 

2

20
2

2
* minarg XXcYSHXX x −+−=                       (10) 

 
where  is estimation of high-resolution image i.e super-
resolution image. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4   EXPERIMENTAL RESULTS 

 
In this paper, the input-low resolution image is upscale by 

a factor of 2 for generic images. After recursive experiment, it 
is observed that 5x5 is an optimum patch size. In this paper, 
we use patches of size 5x5 low-resolution. However, between 
adjacent patches, it can be overlap by pixel of 4, and corre-
sponding for high-resolution patches of size 10×10 can be 
overlap by pixel of 8.  Here human eyes are easier to detect 
changes in color images. Therefore, we work only on illumi-
nance channel only. 

Firstly, we trained two dictionaries for high-resolution and 
low-resolution image patches randomly sampled at the rate of 
100,000 high-resolution / low-resolution patch pairs from each 
set of training images. Dictionary size 1024 is fixed to balance 
between image quality and computation. The λ = 0.15 is used 
throughout the experiment which produce superior results. 

Performances of the different methods are assessed both 
visually and qualitatively by Peak signal to noise ratio (PSNR), 
Structural similarity (SSIM) and image quality index (IQI).   

System configuration: Intel(R) Core(TM) i5-3470 
CPU@3.20GHz machine with 4GB RAM is used for simulation. 
 

 
Fig.1. Joint training of the dictionaries using multiple generic 

images 
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TABLE 1 
PSNR PERFORMANCE FOR DIFFERENT METHODS 

Upscale 
PSNR(dB) 

Zoom Im-
age 

Bicubic In-
terpolation 

Sparse Re-
covery 

2 30.98 32.79 35.04 
4 30.49 32.92 33.43 
6 30.06 32.35 32.49 

 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1 and Fig.2. shows the comparison of different methods 
for different upscaling for an image Lena. From table 1, it is 
clear that the sparse recovery method is more superior than 
any other methods. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

 
                         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Fig. 3, 4, and 5, it is clear that the proposed method gives 
much superior results than any other methods. When the Lena 
image is zoomed by a factor 2, it is get blurred which reduces 
the quality of the image. When the same image is reconstruct-
ed by bicubic interpolation and sparse recovery, the sparse 
recovery shows the superior results as shown in table 1.  
    Table 2, 3 and 4, shows more experimental results of PSNR, 
SSIM and IQI values for different patch sizes withdifferent test 
images.  
 
 
 
 
 
 

 
Fig.2. Zoom image, Bicubic interpolation, Sparse recovery for 
Lena image. 

 

                      
(a)                                                       (b) 

 

  
(c)                                             (d) 

Fig. 3. Results of the Lena with magnification factor two of 5x5 
patch sizes. Left to Right: (a) low-resolution input, (b) zoom im-
age (PSNR = 30.98dB), (c) bicubic interpolation (PSNR = 
32.79dB), (d) Sparse Recovery (PSNR = 35.04dB). 

                               
(a)           (b) 

                

              
(c)                                               (d) 

Fig. 4. Results of the Butterfly with magnification factor two of 
5x5 patch sizes. Left to Right: (a) low-resolution input, (b) zoom 
image (PSNR = 28.30dB), (c) bicubic interpolation (PSNR = 
33.15dB), (d) Sparse Recovery (PSNR = 37.73dB). 

                        
(a)                                                        (b) 

 

 
     (c)                                                   (d) 

                            
Fig. 5. Results of the Parrot with magnification factor two of 5x5 
patch sizes. Left to Right: (a) low-resolution input, (b) zoom im-
age (PSNR = 32.94dB), (c) bicubic interpolation (PSNR = 
334.92dB), (d) Sparse Recovery (PSNR = 36.15dB). 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015                                                                                                         713 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.6, shows time estimation for 3x3, 5x5 and 7x7 patch siz-

es. From this figure, we can conclude that the time required 
for bigger patch size is more. But from the experimental re-
sults, it is clear that the best reconstructed image with moder-
ate time can be achieved by 5x5 patch size. This is justified by 
Fig.7.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.8, shows different test images used in our experiments. 

5 CONCLUSION 
This paper, presents a simple and novel framework for 

single image super-resolution approach. This approach is 
based on sparse representations and jointly trained dictionary. 
Experimental results are better and demonstrated the effec-
tiveness of the proposed algorithm. As compared to zoom and 
bicubic interpolation method, the proposed approach has been 
improved a PSNR of 4.06 dB and 2.25 dB respectively for Lena 
image, 9.43 dB and 4.58 dB respectively for butterfly image 
and similarly 3.21 dB and 1.23dB respectively for parrot im-
age. Ideally optimized patch size is 5x5. Table 3 show 5x5 
patches is often required efficient time and give superior re-

sults in qualitatively and quantitatively. Hence, selection of the 
patch size is very important factor in this approach. Experi-
mental results indicated effectiveness of proposed algorithm. 
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Fig.6. Time Estimation for different patche sizes 

   

 
 
Fig.7. Comparision for PSNR for different patch sizes. 
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TABLE 2 
PSNR (dB), SSIM AND IQI RESULTS OF SIX TEST IMAGES FOR 3X3 PATCH SIZE 

Test images 
Zoom method Bicubic Interpolation 

Sparse recovery 
(Proposed method) Time(sec) 

PSNR SSIM IQI PSNR SSIM IQI PSNR SSIM IQI 
Test 1 Lena 30.98 0.89 0.79 32.79 0.91 0.82 34.44 0.93 0.85 45.522004 
Test 2 Butterfly 28.3 0.92 0.93 33.15 0.97 0.97 36.43 0.98 0.98 36.085286 
Test 3 Face 32.22 0.84 0.75 32.96 0.85 0.76 34.09 0.88 0.8 20.305224 
Test 4 Parrot 32.94 0.92 0.77 34.92 0.94 0.8 35.77 0.95 0.81 72.243137 
Test 5 Rosella-bird 28.55 0.9 0.86 29.58 0.92 0.89 30.14 0.93 0.89 57.638561 
Test 6 Spaghetti 26.87 0.98 0.81 28.95 0.98 0.84 29.66 0.98 0.87 112.195074 

 
 

TABLE 3 
PSNR (dB), SSIM AND IQI RESULTS OF SIX TEST IMAGES FOR 5X5 PATCH SIZE

Test images 
Zoom method Bicubic Interpolation 

Sparse recovery 
(Proposed method) Time(sec) 

PSNR SSIM IQI PSNR SSIM IQI PSNR SSIM IQI 
Test 1 Lena 30.98 0.89 0.79 32.79 0.91 0.82 35.04 0.94 0.86 77.772317 
Test 2 Butterfly 28.3 0.92 0.93 33.15 0.97 0.97 37.73 0.99 0.99 62.379799 
Test 3 Face 32.22 0.84 0.75 32.96 0.85 0.76 34.35 0.89 0.81 34.868287 
Test 4 Parrot 32.94 0.92 0.77 34.92 0.94 0.8 36.15 0.95 0.82 133.885506 
Test 5 Rosella-bird 28.55 0.9 0.86 29.58 0.92 0.89 30.35 0.93 0.9 99.385789 
Test 6 Spaghetti 26.87 0.98 0.81 28.95 0.98 0.84 30.14 0.98 0.88 194.17036 

 
TABLE 4 

PSNR (dB), SSIM AND IQI RESULTS OF SIX TEST IMAGES FOR 7X7 PATCH SIZE

Test images 
Zoom method Bicubic Interpolation 

Sparse recovery 
 (Proposed method) Time(sec) 

PSNR SSIM IQI PSNR SSIM IQI PSNR SSIM IQI 
Test 1 Lena 30.98 0.89 0.79 32.79 0.91 0.82 34.7 0.94 0.86 145.679477 
Test 2 Butterfly 28.3 0.92 0.93 33.15 0.97 0.97 36.9 0.99 0.98 113.824185 
Test 3 Face 32.22 0.84 0.75 32.96 0.85 0.76 34.25 0.88 0.8 66.048155 
Test 4 Parrot 32.94 0.92 0.77 34.92 0.94 0.8 35.87 0.95 0.81 260.917562 
Test 5 Rosella-bird 28.55 0.9 0.86 29.58 0.92 0.89 30.23 0.93 0.9 182.017596 
Test 6 Spaghetti 26.87 0.98 0.81 28.95 0.98 0.84 29.78 0.98 0.87 364.127184 

 
    
 

            
(a) Test 1  (b) Test 2                 (c) Test 3                  (d) Test 4                    (e) Test 5                    (f) Test 6 

 Fig.8. Different Test Images used for demonstration. 
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